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Turbulent pair dispersion and scalar diffusion 
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National Center for Atmospheric Research, Boulder, Colorado 80307 
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A method of treating turbulent pair dispersion and scalar diffusion is presented. Use 
is made of Kraichnan’s form of Richardson’s diffusion equation by relating the 
turbulent pair diffusivity to single-time Eulerian velocity statistics (which are pre- 
sumed known) by means of a statistical independence hypothesis. In  this procedure 
the diffusivity itself is coupled to solutions of the diffusivity equation in a self- 
consistent way. 

The method is applied to both two- and three-dimensional flow. In three-dimensional 
inertial-range and dissipative-range turbulence the turbulent pair diffusivity is 
determined and used to find the values of the coefficients of the scalar spectrum in the 
k-5 and k-l ranges with good agreement with experiment. The Obukhov-Corrsin 
constant is found to be 0-49 and the Batchelor constant is J5. In  two-dimensional 
turbulence the results are compared with constant-pressure balloon dispersion experi- 
ments. Results are also found for the rate of decay of scalar intensity in the special case 
where the initial scalar spectrum peaks in the inertial range. 

1. Introduction 
The most important property of turbulent fluid motion is its ability to disperse 

fluid particles which were initially close together. This is of practical importance for 
the dispersal and dilution of pollutants in the environment and is also of fundamental 
importance to the nature of turbulence. Of equal practical importance, turbulence can 
mix different chemical species or fluids with non-uniform temperature in such a way 
that molecular processes such as diffusion or chemical reaction are enhanced. 

In the processes of pair dispersion and-scalar diffusion under consideration the 
atatistics of the velocity field are presumed known and the statistics of marked fluid 
particles or concentrations of mixing species are sought. It has been known since 
G. I. Taylor’s work (Taylor 1921; Corrsin 1962) that these problems are more natural 
if the Lagrangian statistics of the velocity field are known. However, the Eulerian 
statistics are more easily measured and are known in some idealized situations and i t  
is therefore desirable to relate these quantities. 

In the present paper turbulent dispersionand diffusion in an isotropic, homogeneous, 
incompressible turbulent flow field with zero mean velocity will be considered. Use 
will be made of Kraichnan’s (1965, 1966b) form of Richardson’s (1926) diffusion 
equation, which will be independently derived. Kraichnan’s version of this equation 
was derived by means of the Lagrangian History Direct Interaction approximation 
and has a turbulent diffusivity term which is expressed in terms of a Lagrangian 
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velocity correlation function. In  the present work the Lagrangian and Eulerian 
statistics are related by means of an independence hypothesis, similar to that of 
Corrsin (1959, 1962), but which makes use of persistence of vorticity in order to 
obtain a result which depends only on the single-time Eulerian velocity correlation 
function. These approximations yield closed self-consistent equations which determine 
the turbulent pair diffusivity function. This is done in $5 2 and 3. 

In high-Reynolds-number turbulence, which is dominated by a broad inertial 
subrange, results very similar to those of Kraichnan (19663) are obtained in $4, except 
that the turbulent pair diffusivity in the present work is about half as large. This leads 
to a value of the Obukhov-Corrsin constant which is in better agreement with 
experiment. 

The equations are also applied to the dissipative range with reasonable results and 
to the inertial range of two-dimensional turbulence where the results may be compared 
with balloon dispersal data. 

In $ 5 results on the pair distribution function are presented. Results on the scalar 
spectrum are found in 5 6, and the rate of decay of scalar fluctuation intensity in 3 7. 

2. Derivation of the basic equations 
Let u(x, t )  be one realization from an ensemble of incompressible velocity fields 

expressed in Eulerian co-ordinates. The trajectories r(t) of fluid particles in this field 
are provided by solutions of the ordinary differential equation 

r = ~  at t = s , J  

which is the definition of ‘velocity at a point ’. Suppose that this is integrated both for- 
ward and backward in time and for all initial positions X. Denote the solution by 

r = R(X,slt), 

a notation, due to Kraichnan (1965), which indicates explicitly the dependence on the 
initial conditions. The variable after the vertical bar is the current time, that before 
the bar is the labelling time. In words, R(X, slt) is the position a t  time t of the fluid 
particle which is at  position X at time s. The function R has the property R(X, 81s) = X, 
and, when s and t are held fixed the relationship x = R(X, slt) gives a transformation 
from the Lagrangian co-ordinates X to the Eulerian co-ordinates x. It is assumed that 
this transformation is one to one and has a unique inverse given by X = R(x, t l s ) .  The 
same notation also describes the inverse function because of the following tautology: 
R(x, t l s )  is the position at  time s (the current time now) of the fluid particle which is 
at x at time t .  But this position has been called X. 

A further property of the Lagrangian-Eulerian transformation is important. The 
Jacobian determinant, J = det (&,/ax,), being the ratio of volume elements, is unity 
for incompressible flow. 

In the formalism to be developed on the following pages considerable use will be 
made of Dirac’s delta function. This is the generalized function defined, in the one- 
dimensional case, by the properties 

S(Z) = 0, z * 0, 
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and 

for any continuous function $(x). The latter characterization is called the sifting 
property. An important relation is 

where it is assumed that y = f(z) has a unique solution x = f-l(y) for each y. 
A delta function with rt three-dimensional vector argument is the product of three 

one-dimensionrtl delta functions. The three-dimensional version of the above inversion 
relation is 

again assuming a unique solution to the equation y = f(x) for each y. The particular 
application of this, which recurs throughout this work, is 

&[x-R(X,sJt)] = &[X-R(x,tls)], (2.2) 

which follows from the notation for the inverse of the Lagrangian-Eulerian trans- 
formation and the fact that the Jacobian of this transformation is unity. 

The probability density for the positions x,, x, of two fluid particles at time t ,  when 
their positions are known to be X,, X, at time 8, is defined by 

PAX,, x2, tlX,, x,, 8 )  = (SCXl -R(X,, +)I &[x,- w,, +)I), (2.3) 

where the angle bracket indicates an ensemble average over all realizations of the 
velocity field. In  this equation x,, x,, XI, X, are all fixed numbers and the R functions 
are random variables through their dependence on the velocity field. When the 
arguments of the delta functions in (2.3) are inverted by using (2.2) it is seen that 

P'(X1, x2, tlX,, x2,4 = P,(X,, x,, 81x1, X2,t). (2.4) 

Therefore P, can also be regarded as the probability density for the positions X,, X, of 
the two particles at time s when their positions x,, x2 are known at time t. 

For homogeneous turbulence the probability density for the relative positions of 
two fluid particles is related to P, by the following definition and manipulations; 

Pr(xZ-x1, tlX,-X1,8) 
(6[x,-x,-R(X,,slt)+R(X,,slt)l) 

= J(&[X,-A-R(X1,8~t)]&[~,-A-R(X2,~~t)])dA 
= JP2(xl-A, x,-A, tlX,,X,,s)dd 
= IP2(x1,x2,tlX1 +A,X2+A,s)dA. (2.5) 

The third line follows from the sifting property of delta functions. The fifth line follows 
from the fourth by using homogeneity. Alternatively, this result may be obtained by 
changing variables in P, to obtain the joint probability density for the sum and 
difference of 2, and Z, and then find the marginal density Pr by integrating over the 
sum variable. 

2-2 
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respect to time and using (2.1). This gives 
An equation €or P, may be obtained by differentiating (2.3), which defines P,, with 

2 a  2 
aP2(X1’X2’t’X1’X2yS) = - -,(u(xj,t) n &[x,-R(q,~$)]), (2.6) 

at j=1 i=  1 

Kraichnan’s diffusion equation may be obtained by using approximations similar to 
those used in mixing-length theories, where relationships of the form (uT) = DV(T), 
for transportable quantities T, are obtained. The method described below makes use 
of some ideas from the theory of Markov processes in order to make the form of the 
diffusivity explicit. As a temporary notation let 

where the second line follows from (2.2). This suppresses the dependence on Xl,X2,8, 
which are held fixed. The quantity f(xl, x,, t )  is transportable, that is, its values are 
carried along by the natural motion of the fluid particles. This is shown by using the 
first form of (2.7) and (2.1) to calculate 

~ + u ( x 1 , t ) . ~ + U ( x z , t ) . -  af a ?  E 0. 
8x2 

Because of this one may write 

for arbitrary At. This expressesf (x,, x,, t )  in terms of its value at an earlier time, t - At, 
at the positions the fluid particles would have in order to be a t  x1 and x, at time t .  It 
is convenient now to write 

r t  

where 

R(xi,t(t-At) = xi-J u(xg,tJT)dT, 
1-At 

 xi, t lT) u[R(xi, tlT), TI 
is a shorter notation. This represents the chnge in position of a fluid particle as the 
integral of its velocity. Equation (2.8) may now be written 

2 

f(xl,xz,t) = jf(xl-A,x2-A2,t-At) i = l  n 6(Ai-S,)dAldA2, (2.9) 

where 

Using equation (2.9) the angle bracket in equation (2.6) becomes 

(2.10) 
) 

2 

(Wj,t)f(x1,x2,t)) = S(fx,-A,,x2-A2,t-At)~(xj,t)  i = l  ll W i - S i )  d 4 d A ~  

This is an exact expression and At is still an arbitrary time increment. From its 
definition the function f (xl -A,, x2 - A,, t - At) is a random variable which depends 
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on the velocity field prior to the time t - At. It is now assumed that At is larger than the 
correlation time of the velocity field so thatf (t - At) will be statistically independent of 
the current time velocity, u(x,, t ) .  The random variable S,, defined in (2.9), depends on 
the velocity field in the time interval t-At to t. Therefore the random variables 
f (t - At) and S, depend on the velocity field in non-overlapping time intervals. If the 
velocity field had vanishingly small correlation time, as for a Markoff process, they 
would be statistically independent. It will be assumed that they are approximately 
independent, this being partly justified because they depend only on time integrals of 
the velocity over their respective time intervals which has the effect of partially 
averaging the velocity, thus decreasing the fluctuations from trial to trial. Since the 
velocity u(x,, t )  and S, are more strongly correlated the specific assumption is that 

where At is of the order of the velocity correlation time. 

position and time arguments so that it may be expanded to first order as 
A second assumption is that the function (f) is a slowly varying function of its 

(f(x1- A,, x, - A,, t - At)) 

this being strictly justified for large time. Substituting this into (2.1 l ) ,  carrying out the 
integration on A, and A, and using the fact that (u) = 0 and (f) = P2 gives the final 
result 

(2.12) - _  ap2- 8 -.Dn.ax a P  , 2 a  

at i,l=lax, .I 
with 

(2.13) 

In the last expression the lower limit of integration, which should be t - At, has been 
replaced by s. This is justified when 8 < t - At since the velocities in the integrand are 
uncorrelated when their time arguments differ by more than At. (This is further 
discussed in the next paragraph for the case t - a  < At. With this step, equation (2.12) 
becomes independent of At. 

While the approximations made to derive (2.12) are better justified when t - s  is 
larger than the velocity correlation time, it will be used without this restriction. Some 
justification for believing that (2.12) is suitable for small t - 8 can be found by using it 
to calculate the dispersion tensor. Multiplying (2.12) by (x2-x,) (x,-x,) and inte- 
grating over x, and x2 gives 

a 
- (( x2 - xi) (x, - xi)) = (2D22 + 2011 - 4D12) dx, dx,. at 
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Upon expanding the right-hand side of this for small t - s one obtains 

((xz - x1) (xz -XI)> 
= (Xz- Xl) (X2 - Xl) + ((U(XZ,4 - WXl, 4) (U(X2,4 - UWl, 8 ) ) )  (t - 4% + * - - 9  

which can be shown to be an exact result. 
An equation for P, may be obtained by noting, from the fifth line of equation (2.5), 

that P, is obtained from Pz by integrating over the initial positions; therefore P, must 
also satisfy (2.12). Then using the fact that P, depends on p = x2 - xl, and Djr depends 
on xj - xi by homogeneity, the equation for P, may be written 

with 

a a ap, = - .2D(p,+) . -e  
at ap aP 

r t  

(2.14) 

(2.15) 

For homogeneous, isotropic, incompressible turbulence the turbulent pair diffusivity 
D is a symmetric tensor function of p = x2 - xl, with zero divergence on either index; 

The expression for the turbulent pair diffusivity contains the Lagrangian two-point 
velocity correlation function (u(xl, t )  u(x,, tlT)). This will be related to the single- 
time, two-point, Eulerian velocity correlation function (u(x,, t )  u(x,, t ) )  which will be 
presumed given. The method to be employed is a variation of Corrsin’s (1959, 1962) 
independence hypothesis. Corrsin’s hypothesis has been used by Saffman (1962, Peskin 
(1974) and Lundgren & Pointin (1976) for single-particle dispersion, relating the 
single-point Lagrangian function to the two-point, two-time, Eulerian function as 
Corrsin originally proposed. Taylor & McNamara (1971), Montgomery (1975) and 
Salu & Montgomery (1977), in related plasma diffusion papers, made additional hypo- 
theses which related the two-time Eulerian function to the single-time Eulerian 
function. The hypothesis made in the present work is related to these. 

Some care must be taken in pair dispersion so that the turbulent pair diffusivity and 
hence P, is invariant to random Galilean transformations (Kraichnan 1965). A random 
Galilean transformation is produced by adding to each realization of the velocity field 
a spatially and temporally constant independent random velocity with zero mean. Such 
a transformation obviously does not affect the relative motion of the fluid particles. 
An approximate theory which does not have this property will not properly treat the 
effect of the large eddies to simply convect two dispersing points when they are close 
together. For instance, the turbulent diffusivity should not depend on the probability 
density for the position of a single fluid particle since this is not invariant under the 
transformation. 

The idea is to express the second quantity in the Lagrangian autocorrelation, 
(u(x,, t )  u(x,, t IT)), in terms of the velocity field a t  the current time. For instance, if 
one could assume that the velocity of a fluid particle remains constant following its 
motion one would have u(xz, tlT) = u(xz, t ) .  This would make the Lagrangian auto- 
correlation equal the Eulerian single-time autocorrelation, a result which is only valid 
for small time differences. In the following a similar procedure will be pursued by 
using the transport properties of the vorticity field to relate u(x,tlT) to the current 
velocity field. 

aD,,/ap, = aDi,/apj = 0. 
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The procedure begins by writing 

and then expressing u(X,, T )  in terms of the vorticity, o = V x u, at the same time by 

1 
x W(X3, TI a,. (2.17) 

The vorticity a t  time T is then expressed in terms of the vorticity a t  the current time 
t by means of Kelvin’s theorem (for inviscid flow) : 

(2.18) 

where 
x3 = R(X,, Tit). 

With these substitutions equation (2.16) becomes 

where 

(2.20) 

Thus things have been manipulated in such a way that the explicitly appearing velocity 
field depends on the current time t ,  while the functions R depend on the average 
velocity between times t and T. At this stage Corrsin’s independence hypothesis is 
invoked with the assumption that the latter quantities are approximately independent 
of the former and reversed brackets are inserted at the position of the dot in the scalar 
product. This would be exact if the velocity field were a Markov process, and is 
expected to be a very good approximation when t - T is much larger than a velocity 
correlation time. On the other hand it is exact for small t - T for then R(X, T J t )  becomes 
exactly independent of the velocity fields, so the approximation could be more 
generally valid. 

In  addition to the above approximation it will be assumed that the vortex stretching 
function 8R/8x3 is statistically independent of the R functions which appear in the 
delta functions, an approximation which is true for small t - T because R + x3 in this 
limit. For larger values of t - T one can estimate the dependence of R upon x3 by the 
following reasoning. R depends on the average velocity along a particle trajectory. 
Consider two neighbouring trajectories. The difference in R depends on the average 
of the velocity difference seen by these two particles and therefore depends only on the 
smallest eddies in the flow. Therefore aR/ax, is a statistical quantity which fluctuates 
strongly with the scales of the smallest eddies of the velocity field, while R itself 
depends most strongly on the largest eddies. These quantities are therefore approxi- 
mately independent. For two-dimensional flows, of course, the stretching function 
does not occur. 

With these independence assumptions, the definition of Pz and (aR/ax,) = I, the 
expression for T becomes 

(2.21) = (u(x,, t )  4x3, t))Pz(x,, x3, tlX2, x3, T). 
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When thisis substituted into (2.19), a change of variable to q = X, - X, made, with X, 
fixed, and the last line of (2.5) used, followed by integration by parts and the use of 
isotropy, one obtains 

( W 1 , t ) W 1 +  p,tlT)) = J U G +  ~ , t ) & ( S , t l T ) d k  (2.22) 
where 

and 
U(P, t )  = ( W I ,  t )  Wl+ P, t ) )  9 (2.23) 

(2.24) 

This is the desired result which expresses the Lagrangian velocity correlation function 
in terms of the Eulerian two-point single-time correlation function. This is not simply 
a linear relation between the two functions, because & depends on P, which is a solution 
of (2.14). The relationship may be seen more clearly by substituting (2.22) into (2.15) 
for the turbulent diffusivity. This gives 

t 
D(p,tls) = [U(S,t)-U(S+ P , t ) l /  & ( S , t J T ) d T d S .  (2.25) 

Therefore one sees that, while D depends explicitly on the Eulerian function at  the 
current time, P, and & will depend on the entire past history of this function (stationary 
turbulence has not yet been assumed). Also it is clear that the condition of invariance 
under a random Galilean transformation is satisfied, since the only place where the 
velocity field appears is in U and the difference form in (2.25) is invariant (U itself is 
not invariant). 

Kelvin’s theorem, which is only true for inviscid flow, was used in the above 
argument. One might question the neglect of viscosity. The process of pair dispersion 
depends on eddies of the same size as the spacing between the points. If the spacing is 
large compared with the Kolmogorov microscale the viscosity-dominated small eddies 
should have no effect and can be neglected. When the spacing is small, in the dissi- 
pation range, say, it is believed that (2.25) is still substantially correct (with an 
appropriate viscosity-dominated form for U), because, while vorticity will tend to 
diffuse, the integrated vorticity of a blob will be conserved so that there will tend to be 
a certain amount of persistence of vorticity. It will be seen below that this assumption 
leads to quite reasonable results. 

The above equations were derived for three-dimensional flow. Some small modifi- 
cations are required for two-dimensional flow; a logarithmic potential in (2.17) and no 
stretching in (2.18). In the final results Q is modified by replacing - (4nq)-lin (2.24) 
by In q/2n and all integrals are to be taken as two-dimensional. 

s 

3. Equations for the turbulent pair diffusivity 
The basic equationsfor the turbulent diffusivity are (2.25) with Qgiven by (2.24) and 

P, by (2.14). It is possible to recast these as equations for &. Two formulations are 
given, one in physical space, and one in wavenumber space, which is more convenient 
for some purposes. 
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3.1. Physical-space fomzuEatim 
For isotropic homogeneous turbulence the turbulent diffusivity D and the Eulerian 
velocity correla,tion function U , each having zero divergence, may be represented in 
terms of single-scalar ‘longitudinal ’ functions, 

U(p,t )  = h(p,t)-+l@,t) PQ ( I - -  ?)* Pa 
(3.3) 

where h(p, t )  can be regarded as known. 
Define a function W(5, tlT) by 

W(5,tlT) = -‘I(”’) P,(EJlq,T)dq; 
4n aq!7 

QG t l T) = z . W ( 5 ,  tlT). 

then by (2.24) 
a 

By isotropy, 

where 
observed that the function W satisfies the same differential equation as P,, namely 

W(6, t l q  = t W G  tlT) (3.7) 

is a unit vector and both Q and W depend only on the magnitude of E. It is 

a a a  
at aP aP 
-fiW(p,t(a) = 2D:--@W(p,tls). 

Upon taking the scalar product with fi and using (3.1), this may be written 

aw -- - 2f q + 2 ( 2 f + p  5) ; (5 - 7) , 
at aP 

where Q is to be determined from 
a 

&(P, t l s )  = - * 6 W P ,  t l 4  
aP 
l a  

P2 aP 
= --pw. 

(3.8) 

(3.9) 

(3.10) 

The initial conditions on Q and W may be obtained from (2.24) and (3.5) by noting 
c(g,tlq,T) +- S(5-q) as t + T; therefore 

(3.11) 

(3.12) 
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Equation (3.9) may be rewritten as a differential equation for the quantity 4np2W, 
namely 

(3.14) 

4np2W-+1 as t + s .  

In this equation the function f is a functional of Q or W which can be obtained from 
(2.25) and (3.1). One way is by using 

(3.16;) 
aP 

t s 3f+p- af = &(p,t)= [Gi(5,t)-v,(S+p,t)l/ Q(5,tlT)dTdS. 

Thus equations (3.14) and (3.15) are coupled equations for the two scalar quantities Q 
and f. 

For two-dimensional flow there are some differences in the final equations. The 
vector relations (3.1) and (3.3) are correct but the latitudinal functions g and 1 are 
related to the longitudinal functions by 

af ah 
g = f + p - ,  1 = h + p - .  

aP aP 
The function w is defined by 

(3.16) 

(3.18) 

2 n p W - t l  as t - t s ,  J 

3.2. Spectral formulation 

O( k, t )  = I e-%**P U ( p, t )  dp. 

The energy spectrum tensor is defined by 
(3.21) 

Because of incompressibility and isotropy this may be represented in terms of a single 
scalar by 

(3.22) 

where Qaa is related to the energy spectrum function E by 

(3.23) 
Qaa(k, t )  = 4+E(k, t ) / k2 ,  



As a temporary notation introduce 

P:(k, tlq,  8 )  = le-*k*PP,(p,tlq, 8) dp 

and transform (2.14). Using equation (3.27) this gives 

aP'(k'tlq's) at ' = Bkk:SN(p,tls)[P;(k-p,tlq,s)-P;(k,tlq,s)dp. 

Now transform (2.24), using (3.25). This yields 
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(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

The vector quantity in parentheses satisfies the same equation as Pi, namely (3.31). 
Further, by istropy, it is equal to kR(k, t le) /k2.  By making this substitution, taking the 
scalar product with k and using (3.28) and (3.29) one obtains 

a single nonlinear differential-integral equation for R, to be solved with the initial 

condition R(k,s(s) = 1. 

The longitudinal turbulent diffusivity f may be determined from R by using 
f = pp:D/p2 from equation (3.1), the definition of D from (2.25) and the inverse 
transforms of (3.25) and (3.27). The result is 

The integration in (3.33) may be expressed in more convenient form by a standard 
changeof variables (seeormag 1974; Rose & Sulem 1978). It is noted that the integrand 
depends only on p and the angle 0 between p and k. In place of the angle variable the 
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new variable q = Jk-pl is introduced. Using dp = 2n(qp/k)  dqdp ,  equation (3.33) can 
be written 

(3.35) 

where 

(k * PI2 sin26 = 1 - -  
k2p2 

and the region of integration A, is 

O < I , < O O ,  Ip-kl < q < p + k .  

For two-dimensional flow, equation (3.35) should be modified by replacing sin2 0 by 
4sin 6/n and (3.34) should be replaced by 

(3.36) 

4. Solutions for the turbulent pair diffusivity 
The formulations of the last section are for generally decaying homogeneous, 

isotropic turbulence when the energy-spectrum function is known. There are some 
special cases where the turbulence is stationary and the spectrum or the velocity 
correlation function have well-established simple forms where similarity solutions can 
be found and the turbulent pair diffusivity thus determined. These are worked out in 
the following subsections. 

4.1. The dissipation range 
For small p a well-known expansion of the Eulerian velocity correlation function is 
(Monin & Yaglom 1975, equation (21.16))  

and 

(4.1) 
E u = U21+-(pp-2p21),  

30v 

where 3 Ua = (u(x,, t )  . u(xl, t ) )  and E is the energy dissipation rate. For high-Reynolds- 
number turbulence this requires that p be much smaller than the Kolmogorov micro- 
scale (v"/~)i ,  however for lower Reynolds number it should be valid under less stringent 
conditions, sayp smaller than the integral scale. For stationary turbulence E is constant. 

It will be assumed that (3.14) and (3.15) have a solution which is dominated by this 
part of the Eulerian function for small p. If this is the case the solution can only depend 
on p, t - s and the quantity (VIE)) which has units of time (it is the turnaround time of 
eddies of the size of the Kolmogorov microscale). Dimensional considerations therefore 
imply 

(4 .2)  f = (E/V)fPy-&), 4 V 2 W  = &(7), 
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where 7 = ( s / u ) b ( t - s )  and K(0) = 1. Equation (3.14) gives 

while (3.10) gives the simple result 

When this is substituted into (3.15) one obtains 

Equations (4.3) and (4.5) are easily solved for 

39 

(4.3) 

shows that the turbulent pair diffusivity becomes independent of time after several 
Kolmogorov times since fo + (6 J5)-l. 

The Lagrangian correlation function can be obtained from (2.22) in the form 

W X I ,  t )  u(x1 + P, tlsD - (U(X1, t )  U(X1, tlsD = W ( P )  - U(O)l6(7). (4.9) 
In  words this says that the correlation between the velocities at a fixed point and at the 
earlier position of a neighbouring point minus the correlation between the velocities 
a t  the fixed point and at its own earlier position equals the difference between the 
corresponding unlagged correlation functions times a decaying function of the lag 
time. The function Wo decays to zero in several Kolmogorov times. Notice that these 
results have not been applied directly to (2.22) with p = 0. That would be incorrect 
since (u(x,, t )  u(xl, t ls))  depends on the enegy-containing scales of the motion, not 
the dissipative scales. 

4.2. The two-dimensional inertial range 
For two-dimensional turbulence, which to a certain extent models the large-scale 
motions of the atmosphere, Kraichnan (1971) has proposed that the energy spectrum 
function behaves like E N k-s(ln k/k,)-) for large k, decaying slightly faster than k-3 
and Saffman (1971) proposes E N k-4. Under such circumstances it is easy to see that 
the longitudinal correlation function behaves like 

h = ho-a-2p2+ ... 
and therefore 

u = h  0 I + 2 a -2 P ( p 2  @- 41) +..., 

(4.10) 

(4.11) 

where a ie a constant with units of time. (If E N k-3 an additional p2 In p term is needed 
in (4.10).) 
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As in the last subsection there will be a similarity solution of form 

f = a-1p2fi(~l), 2rpW = W,(71), 

where 71 = (t -s ) /a  and Wl(0) = 1. Equation (3.18) then gives 

and (3.20) and (3.19) give 

and 
Q = K(71) S(P), 

J O  
The solution of (4.13) and (4.15) is 

and the final result is 

or 

D = ~ - ‘ p 2 f i ( 7 ~ )  31 - 2 - . ( 7 )  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

The equation for the Lagrangian correlation function is the same as (4.9). 

4.3. The three-dimensional inertial range 
For large-Reynolds-number turbulence the Kolmogorov ( 1941) cascade theory gives a 
longitudinal velocity correlation function which behaves like 

h = U2-bsgpt+ ... (4.20) 

for p small, but large compared to the Kolmogorov microscale, (u3/c)1,  which shrinks 
to  zero when the Reynolds number goes to infinity. The energy spectrum function, E ,  
related to  h by 

(4.21) 

(4.22) 

for large k ,  where C is the Kolmogorov constant. The constants C and b are related by 
b = 0.657c. 

I n  the physical-space formulation it is assumed that there is a solution which only 
dependsonp,t - sands. On dimensional grounds the dependent variables canonly occur 
in the combination 

y=- P 
2 q t  - s)%’ 

(4.23) 

where E = C ~ S ,  and 4rp2 W which is dimensionless and f which has units ‘ length2/time ’ 
must have the form 

47rp2W = W(y), (4.24) 

f = 2+PP53(Y). (4.25) 
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The solution in this formulation has not been completed. However, by means of (3.14) 
and (3.15) it  can be established that 

W(y) = q9J3+V1yy-s1+ ..., (4.26) 

A?/) =Jb+.flY*+... (4.27) 

for small y where the coefficients are Lonstants. From equation (3.10) 

(4.28) 

In  the spectral formulation given by (3.35) the function R(k, t l s )  can only depend on 

R(k, tls) = Wx), (4.29) 

x = Elk(t - s)#. (4.30) 

k,  t - s and E ;  therefore it must be of the form 

By using (3.25) and the result for Q given by (4.28) it  can be shown that 

for large x. 
R(x)  N x - 9  (4.31) 

By using (4.29) and (4.30), equation (3.35) takes the form 

(4.32) 

where u = Eip(t - s)# and v = E&q(t - s)% and 

This is to be solved with the initial condition R(0) = 1. 

R(x) by means of (3.34) which takes the convergent form 
The longitudinal diffusivity functionfdefined by (4.25), may be expressed in terms of 

The related latitudinal function defined by g = E#p+g"(y) is given by 

(4.33) 

(4.34) 

Expansions of these functions for small y are found to be 

f(y) = 0*200911 - O*0667I2y* + . . ., (4.35) 

where 

I. = lorn x-* R(x)  ax ,  

(4.36) 

(4.37) 

I, = Sorn xi R ( z )  a x .  (4.38) 
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FIQURE 1. The inertial range function R versus the dimensionless wavenumber 
I = k d ( t - a ) * .  The dashed line is R = 0.012(~/6)-%~. 

For large y 
p(y) = 0*6576y-Q+ ..., (4.39) 

g”(y) = 0.8767~-8 + . . . . (4.40) 

Equation (4.32) has been solved numerically by a method similar to that described 
by Kraichnan ( 1 9 6 6 ~ ) .  Basically the integral is expressed in terms of a finite number of 
function values of R, Ri = R(hi), i = 1,2,  . . , , N, and the derivative approximated by a 
difference. Thus 

Rn+1 = Rn++h[Fn+l(Rl, *..,RN)+J’n(%, * * * > R N ) I ,  (4.41) 

where F, is the integral. If the Fn’s are evaluated by an initial set of R,’s and a new set 
computed by the above formula this is found to be a divergent scheme. However, ifthe 
Fn’s are always evaluated using the most current values of the R,’s the iteration 
process converges. This iteration process is 

Rg$,1) = Rg+’) + +h[F n+l (RU+’) 1 ) . * . )  R:+l), R$i1, . , ., R$) 
+ Fn(Rf+’), . . . Rg+l), R$i1, . . . Rg))], (4.42) 

where Rcn refers to the j th  iteration. In approximating the integral use was made of 
the asymptotic approximation R(x) = R,(x/Nh)-’: whenever u or v was greater than 
Nh. This was done numerically when u < 2Nh and analytically when u 2 2Nh. 

The basic result of this computation is the function R(x) which is shown in figure 1 
together with the x+ asymptote. This function corresponds to the function called R 
by Kraichnan (1966u), computed by the abridged LHDI approximation, except that 
his argument is s = sfkQ(t - s) (a dimensionless time) while in the present paper i t  is 
x = E*k(t - s)* (a dimensionless wavenumber). The functions appear to be similar 
except for a considerably longer tail on Kraichnan’s function, which behaves like 



Turbulent pair dispersion and scalar diffusion 43 

0.6 1 1 1 1 1 I 1 

0.5 

0.4 

0.1 

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 
Y 

FIGURE 2. The dimensionless longitudinal and latitudinal turbulent pair diffusivities in the 
inertial range versus the dimensionless distance y = pE-i(t - 8)-%. The dotted line is the aaymptotic 
result 3 = 0.321 - 0.105y*. The dashed line is the approximation] = 0.32/( 1 + 0.33~8).  

x-* compared with the present x-'a'. The longer tail accounts for different estimates 
of the value of the integral Il. In  the present work 

Il = 1.60, (4.43) 

I, = 1.57, (4.44) 

while Kraichnan computes 

IR = lorn R&) ds = gcaIl, 

obtaining IR = 1.87. With C = 1.77 this corresponds to Il = 2.43, considerably larger. 
The values of Il and I, given above make 

f = 0.321 - 0.105?/ + . . ., (4.45) 

jj = 0*535-0-2lOy)+ .... (4.46) 

The functions f and jj have been calculated numerically from (4.33), evaluating the 
trigonometric functions recursively. The results are shown in figure 2 together with the 
asymptotic results. These functions correspond to Kraichnan's 4, and J, except for 
multiplying constants and arguments of the functions. Whereas the present analysis 
givesf(0) = 0.331, Kraichnan's value of this number would be 0-752. This comparison 
will be pursued in 5 6. 

The dotted line in figure 2 is the function 

(4.47) 

which is seen to approximate f adequately 
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5. Pair dispersion and the pair distribution function 
Once the turbulent pair diffusivity has been determined by the methods of the last 

few sections, equation (2.14) provides a linear partial differential equation for the pair 
distribution function P,(e, tlq, s). In the subsections below, the special cases where the 
pair diffusivity has been determined in 0 4 will be examined. In  none of these cases is 
P, itself found. However, it is possible to determine the distribution function for the 
magnitude of the pair separation. 

5.1. T h e  dissipation range 

When the particles are close enough together that they only feel dissipation range 
eddies, P, should be a solution of equation (2.14) with D given by (4.8). For convenience 
define a new time variable by 

T = ' 2f0(7) d7 = 8 In cosh (7/,/5), 
0 

this function behaves like ~ ~ / 3 0  as 7 -f 0 and like 7/3,/5 as 7 3  00. Then the equation 
for P, becomes 

Pr = 6 ( p - q )  at T = 0, 

where q is a fixed non-statistical initial separation vector. 
Since the right-hand side of this equation is homogeneous in p, independent moment 

equations of all orders may be computed, by integrating by parts. Using the notation 

(Pi) = /PiCdP9 

<PiPj> = J'p ip jPrdp,  
one readily finds 

(5.3) 

(5.4) 

a 
@(Pi )  = 0, 

@ ( P i P j )  = 4Q2> 4* - 2 (PiPj) .  

( P i )  = q.2 a t  T = 0, 

a 

Equation (5.3) shows (p) = q for all time. Equation (5.4) may first be solved for (p2 ) ,  
giving 

(p2) = q2elOT (5.5) 

and then for ( p i p j )  - &(p2) aij, giving the final result 

(Pi~j )  = Qq26ijeloT + (q iq j -  fq2s i j )e -2T* 

As T increases ( p i p j )  rapidly becomes isotropic, forgetting its dependence on the 
direction of the initial separation vector. 

It is apparent that these solutions are only physically valid for a limited time. If the 
initial Separation q is in the dissipation range, equation (5 .5 )  shows that eventually the 
particles will be affected by eddies outside of this range. 

It is possible to solve for the distribution function for the magnitude of the particle 
separations. This function is defined by ( S ( R - p ) ) ,  that is, by 

w, tlq, 0) = /w - P )  tjq, 0) dP. (5.7) 
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It has the normalization lom PdR = 1. 

An equation for P may be derived as follows. First differentiate equation (5.7) with 
respect to T, obtaining 

ap 

then substitute for aP,/aT from (5 .2 ) .  Integrate by parts twice to shift the derivatives 
onto the delta function and then from derivatives with respect t op  to derivatives with 
respect to R, which can be taken outside of the integral. This gives the result 

to be solved with the initial condition 

P = 6(R-q)  at T = 0. 

This can be reduced to the heat equation by the change of variables X = In R/q - T,  
giving 

(5.10) 
a a 2  - p e 2 T  = -Pe2T 

aT ax2 
with initial condition 

1 

q 
PeZT = - S ( X )  at T = 0. 

The well-known point-source solution of the heat equation may be manipulated to 
give the final form 

(5.11) 

which is the standard form of the log-normal distribution. That is, In R/q is distributed 
normally with mean 3T and variance (2T)4. 

The function P may also be derived as 4np2pI: where p", is the spherically symmetric 
solution of (5 .2)  which satisfies the initial condition S(p - q)/4nq2. 

These results are in substantial agreement with those of other investigators. 
Batchelor (1952) predicted exponential growth of the particle separation, including the 
( E / v ) ~  scaling of the time. Kraichnan (1974) obtained both exponential growth and the 
log-normal distribution by making some statistical assumptions. 

5.2.  The two-dimensional inertial range 
In  this awe D is given by (4.19) and the equation for P, is 

where 
P, = 6(p-q) at Tl = 0, 

Tl = /uT12fi(71) d~~ = 4 In cosh ( 2 ~ ~ )  

(5.12) 

(5.13) 
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FIGURE 3. The mean separation of balloon pairs versus the number of days after release. The 
solid curve is calculated from (6.19). The solid points are due to Er-El & Peskin, reduced from 
TWERLE data. 

goes like 7; for small 71 and like 71 for large 71 and p is understood to be a two-dimen- 
sional vector. As in the dissipation range, homogeneity of the right-hand side of (5.12) 
ensures independent moment equations. In  particular the second moment equation, 

has solution 

(6.14) 

( p 2 )  = q2eET1, (6.16) 

(5.16) 

The distribution function for the magnitude of particle separations is defined as 
before by (5.7) and an equation for this quantity may be derived from (5.12) by the 
same procedure, which gives 

(p ip j )  = 4q2eET1Sij + (gigj - 4q28,,) e-dT1. 

(5.17) 
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with initial condition, P = 6(R - q )  at Tl = 0. The solution is 

(5.18) 

a log-normal distribution again but with slightly different numbers. 
Independent moment equations may also be obtained from (5.17). In particular, 

( p )  = qe3T1. (5.19) 

There have been two large-scale balloon release experiments in which groups of 
constant pressure balloons were tracked by satellite over a period of several months. 
The Eole experiment (Morel & Bandeen 1973; Morel & Larcheveque 1974) waslaunched 
in 1971 and the TWERLE experiment (Julian et al. 1977) in 1975. In  both experi- 
ments pair separation statistics have been reported, the TWERLE data having been 
recently studied by Er-El & Peskin (1979, private communication). They are notably 
non-isotropic at large times after release, with preferred separation in the zonal 
direction. For times shorter than 6 or 7 days after release this effect is smaller but still 
larger than can be explained by zonal bias in the initial separation vector which results 
in the effects seen in (5.16). Some of the early time TWERLE results are shown in 
figure 3, where measured values of ( p )  are plotted versus time after release from the 
groundandoomparedwith (5.19)in which Tlisgiven by ( 5 . 1 3 ) w i t h ~ ~  = tlaandaandq 
are 6.5 days and 200 km respectively. The agreement is satisfactory, though it takes 
quite a few days to reach the asymptote (p) - exp (3t/a), which would be a straight 
line on this figure. Similar results could be shown for the EOLE data. 

Lin (1971) has also predicted exponential separation. 

5.3. The three-dimensional inertial range 
In the three-dimensional inertial range P, should satisfy (2.14) with D given by (3.1) 
with f in the special form (4.33). This equation is not simple enough to calculate 
independent moment equations; however, it is possible to derive an equation for the 
distribution function for the magnitude of particle separations. The same procedure 
described in $5.1 gives 

-- 

or 

where f is given by 
f = ffR$$( Y ) ,  Y = R/&# 

(5.20) 

(5.21) 

and the initial condition is P(R, Olq, 0). The solution satisfying this initial condition is 
not known; however there is a similarity solution due to Kraichnan (1966b) which 
generalizes the results of Richardson (1926) and Roberts (1961). This solution is valid 
for time large enough that 24t4 9 q and unlike the solutions in the last two subsections 
becomes independent of q in this limit. Because of the normalization 

l0*PdR = 1, 
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FIGURE 4. The probability density for the separation distance between particle pairs in inertial 
range turbulence at large time after release. The dashed line is a log-normal distribution with 
the same mean and variance. 

one seeks a similarity solution in the form 

with the property 
P(R,  t [q ,  0) = (Ett+)-lP( Y )  

j-omP(Y)dY = 1. 

The function P must satisfy 

dY Y 
d YP= -2Y4f(Y)--- 

3 d  
2dY dY 

--- 

and the solution is easily found to be 

where 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

One should note that the solution is independent of the specific form of the functionf. 
Also one should note that Kraichnan’s (1966b) solution is in error; the integral in the 
exponent in his equation (5.4) is missing. 

Computations have been made using (4.47) as an approximation tof. This gives 

p ( Y )  = NY2exp{-3 .52(Y*+0.165Y*))  (5.26) 

with N = 37.0. This is plotted in figure 4. The maximum of this function occurs a t  
Y = 0.57, which means that the most probable separation is 

pm = 0-57(2t3)d = 0*87(d3)4.  

Also plotted is a log-normal distribution with the same mean and variance. 
The first few moments have been calculated, with the results (Y)  = 0.97, 

(Y2) = 1.30, (Y3) = 2.26, { Y4) = 4.80, { Y5) = 12.07, { Y6) = 34.92. The corrc- 
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sponding moments for the log-normal distribution are respectively 0.97, 1.30, 2.43, 
6.36, 23.11, 116-9 which rapidly become larger because of the longer tail on the log- 
normal distribution. 

From the second moment one finds 

(p2) = 1*30Et3 = 3.06€t3, (5.27) 

which is Richardson's (1926) law. Kraichnan (1966b) gives (p2) = 2-42st3. Experiments 
cited by Monin & Yaglom (1975) verify the exponent in this law but the coefficient has 
not been established because of the difficulty in measuring E .  

From the above moments one can calculate (p4)/@2)2 = 2.83 and (p*)/(p2)>" = 15-8 
which can be compared with the values 2-27 and 8.86 calculated by Kraichnan. 

6. Turbulent diffusion 
Let c(x, t )  be the concentration of a passive scalar satisfying 

(6.1) 
ac 
-+u.vc = 9 v 2 c ,  
at 

where 9 is a molecular diffusivity. Suppose, to begin, that 9 is zero. In this case c is 
simply carried with the fluid particles and 

C(X, t )  = c(R(x, t l O ) ,  0). (6.2) 

Using this result, one finds 

(C(X1, t )  4x22 t ) )  
= I(C(X1,O) a,, 0) &(XI - R(x1, tl0)) v 2 -  R(x2, tl0))) a 1  a 2  

= I(C(X1,O) C(X2, 0))~2(Xl,  x2, tlX1, x,, 0) d x 1 a 2 ,  

(6.3) 

(6.4) 

where the last line follows because the scalar is passive, i.e. does not affect the velocity 
field. For a homogeneous scalar field, the scalar correlation function is a function only 
of the separation of the two points, 

aR, a -- - - . 2D. - .  
at ap ap 

It is seen that in the absence of molecular diffusivity the effective turbulent diffusivity 
is the turbulent pair diffusivity. 

If molecular diffusivity is not neglected an equation for R, may be derived from (6. l ) ,  

If one could reason that the flux term were independent of the molecular diffusivity 
then the appropriate equation would be 
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It is known, however, from the work of Batchelor (1959) and Kraichnan (1968) that 
this is not a uniformly valid approximation at all scales. One can reason that the 
approximation is good if the diffusive relaxation time, (%2)-1, is large compared with 
the eddy turnaround time for eddies of the same size, k-l, as the scalar inhomogeneity 
under consideration. In  the inertial range where the turnaround time is (ek2)-' this 

requires k < (s/ .P)f (6.10) 

while in the dissipation range where the turnaround time is (VIE)& it requires 
k < ( e / B 2 ) f .  (6.11) 

Therefore, equation (6.9) is in error at large wavenumbers or at small values of p. 
In  the following, some results on the asymptotic form of the scalar spectrum will be 

obtained. Equation (6.9) will be used for analytical reasons, even though it is not 
completely justified. The equation gives the correct scaling with diffusivity and even 
gives results which agree moderately well with experiment in the diffusion dominated 
limit. 

For homogeneous turbulence (c) is constant, and without loss of generality may be 
taken to be zero. In this case R,(p, t )  will tend to zero as p + 00 and one can define 

(6.12) ac(k, t )  = /e-a~-pIZ,(p,  t )  dp. 

From the inverse transform of this, one finds 

(c2) = R,(O, t )  = G(k ,  t) dk, (6.13) 
10- 

where the scalar spectrum function G(k, t) is related to Oc and R, by 

For isotropic homogeneous turbulence, equation (6.9) becomes 

(6.14) 

(6.15) 

In  order to obtain the high-wavenumber behaviour of the scalar spectrum the small-p 
behaviour of R, is required. For small p one looks for solutions of form 

R,(p, t )  = (c2) + RL(P, t ) ,  

where RL + 0 as p + 0. For sufficiently small p,  one can write 

with K = d(G) /d t .  This may be integrated to give 

(6.16) 

or 

(6.17) 

(6.18) 
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When equation (6.17) is substituted into (6.14) the asymptotic form of G(k,  t )  may be 
found from 

(6.19) 

6.1. The dissipation range 

When p < (v3 /e) t ,  f is given by (4.2)’ f = ( ev ) tp2 f , (~ ) ,  where f,, + 1/6,/5 as 7 -+ a. 
In  this case equation (6.18) may be integrated to give 

(6.20) 

When p B ( s /v92)4 ,  so that inequality (6.11) is satisfied (in order to also be in the 
dissipation range this requires 9 < v) this reduces to Batchelor’s (1959) form 

(6.21) 

with some slightly different coefficients which will be discussed below. It is interesting 
to note that when p < ( E / V ~ ~ ) &  which completely violates inequality (6.11)’ (6.20) 
reduces to the exact result 

1 K  R’ - _ _  
c - 1 2 9 P 2 .  

Equation (6.19) may be integrated to give 

where 

(6.22) 

(6.23) 

and the asymptotic value offo has been used. When inequality (6.1 1) is employed this 
reduces to 

KJ5 1 
( E / v ) ~  k’ G(k,  t )  = -- (6.24) 

which is Batchelor’s (1959) viscous-convective result with a factor 4 5  instead of 2. 
Experiments of Gibson & Schwarz (1963) are in satisfactory agreement with either of 
these numbers. Furthermore the result (6.23) when extended into the questionable 
diffusive range is also in satisfactory agreement with these experiments (and with the 
quite different analytical expression of Batchelor’s) over the range of the experiments. 

The value 4 5  in equation (6.24) is inversely proportional to fo. The agreement with 
experiment cited above tends to support the use of (2.25) in the dissipation range. 

6.2. The inertial range 
In  high-Reynolds-number turbulence where there is an extensive inertial range, the 
appropriate form for f is given by (4.25), 

f = E”p43(y), y = p/zt t t .  (6.25) 
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For sufficiently large t ,  f may be replaced by fo = 0.321. In this case the expression 
(6.19) for the scalar spectrum may be written 

where 

(6.26) 

In the inertial-convective limit, where inequality (6.10) is satisfied, the parameter 
b + 0 and (6.26) gives 

(6.27) 
K 

G(k,  t )  = - p 3  kf, 

where 

(6.28) 

= 0.486 

upon using C = 1-77 andfo = 0.321. This form for the scalar spectrum is due to Obukhov 
(1949) and Corrsin (1951) and p3 is called the Obukhov-Corrsin number. Kraichnan 
(19663) gives p3 = 0.208 (which results from (6.28) with C = 1.77 andfo = 0.752). 

Experimental values of p3 have been obtained by a number of investigators. These 
results are collected in table 1. The value p3 = 0.49 of the present investigation appears 
to be within the experimental scatter of most of these. 

In  the inertial-convective limit equation (6.18) gives 

(6.29) 

In  the inertial-diffusive limit where inequality (6.10) is violated, an asymptotic 
expansion of (6.26) for large 3, gives 

(6.30) 

This is not in agreement with the generally accepted k-&sX behaviour predicted by 
Batchelor, Howella & Townsend (1959) which takes into account that the molecular 
diffusivity can modify the turbulent diffusivity . This inertial-diffusive limit can only 
occur in fluids for which 9 v since k 4 (s/v3)4 to be in the inertial range and 
k 9 (e /g3)*  to be in the diffusive range. There have been experiments by Granatstein, 
Buchsbaum & Bugnolo (1966) in a slightly ionized plasma ( v / 9  = 0.07) and by Clay 
(1973) in mercury ( v / 9  = 0.02) which appear to support the 22- law. 

7. Decay of the scalar variance or fluctuation intensity 
The spectral results of the last section were expressed in terms of d(c2)/dt which is 

not known. The fluctuation intensity (c2) is a quantity one would like to predict 
because it is a measure of the degree of mixing of the scalar pollutant or chemical 
species. One can imagine a situation in which the scalar is originally distributed in 
some uniformly random lumpy manner (with (c) = 0) specified by R, or G .  In the 
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Reference Value of f standard deviation 
Gibson & Schwan (1963) 
Grant et d. (1968) 
Paquin & Pond (1971) 

Williams (1974) 
Champagne et aZ. (1977) 

0.68 f 0.08 
0.62 f 0.10 
0.41 f 0.07 (temperature) 
0-40 f 0.09 (humidity) 
0.46 f 0-02 (estimated from Champagne et al. 1977) 
0-41 f 0.02 

TABLE 1. Experimental values of the Obukhov-Corrsin number. 

absence of molecular diffusivity {c2) will remain constant while, according to Batchelor 
(1952), (Vc.Vc) will continue to increase with time because of the stretching, and 
consequent squeezing together, of neighbouring surfaces of constant c. This means 
that the spectrum G(k, t )  will evolve in such a way that its integral remains constant, 
while the integral of k2G increases with time, thus spreading C to higher wavenumbers. 
Ultimately molecular diffusivity will become important and (c2) will decay. It will be 
shown that when the diffusion is controlled by inertial range eddies (c2) will finally 
decay at  a rate independent of the Schmidt number, S = v / 9 ,  and consequently 
independent of the molecular diffusivity . 

The case will be considered in which the initial scale of the scalar spectrum is much 
smaller than the energy scale of the turbulence and the diffusion is dominated by the 
inertial subrange of the energy spectrum. One can envision experiments similar to 
those of Warhaft & Lumley (1978) in which the scalar is temperature introduced by 
a heated wire array downstream of a turbulence-producing grid. In  the case under 
consideration it is required that the heated wire spacing be in the inertial range of the 
turbulence. 

The basic equation for Rc(p, t )  is equation (6.15) which is to be solved with initial 
value Bc(p, 0 )  specified. It will be assumed that Rc(p, 0 )  scales in the inertial range. The 
solution will be obtained by matching an inner expansion, similar to (6.18), to  an outer 
expansion derived from the similarity solution (5.24). 

It will be assumed that f has a composite form which covers both the inertial and 
dissipation ranges, 

(7.1) 

where the function P is not precisely known, but has the properties 

and 

thus providing a transition from the inertial p* to  the dissipative p2 as p + 0. Let new 
varisbles 

be defined, where po is the characteristic length scale of the initial conditions and 
piZ-* is a turnaround time for inertial-range eddies. Then 

f = E*p*f(p/E&tt) + vF(p/(v3/Z)fy (+)i t ) ,  

F + 0 as p / ($ /E) f+  co (7.2) 

F - rP/(v”4*12fo((~/v)* t )  - ~P/(J9/Z)*I*SO as P/(v”Z)* + 0, (7.3) 

p = p/po, T = t /p ja-+  
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It is assumed that po $ (v3/2)4 and S is of order 1 ; therefore a is a small parameter. 
Equation (7.4) is to be solved with initial condition R,(S, 0) = R,(g). The solution 
must have the property 

An outer solution is sought in the form of a power series in the small parameter a;  
R, = RLo) + aRil) + . . . . The first term must therefore satisfy 

R ~ O )  = R,, at 7 = 0. J 
The general solution of this is not known. However since equations (7.6) and (5.20) are 
the same, the similarity solution, (5.24), may be adapted to this case. The solution is 

where 

This solution does not satisfy the exact initial conditions, but does satisfy (7.5). It is 
assumed that the exact solution will tend to equation (7.7) for large r .  

The similarity solution has the property 

as 5 + 0, which is clearly singular at 5 = 0. This corner must be smoothed out by 
matching this outer solution to an inner solution which is valid near 5 = 0. 

An inner solution is obtained by f i s t  introducing an inner variable E defined by 
5 = [a*. The equation then takes the form 

in which molecular and turbulent diffusion terms are all of the same order in a. The new 
variable scales lengths with (Q3/E)4  instead of po. 

When expressed in the newvariables, equation (7.8) takes the form (innerexpansion 
of outer expansion) 

which suggests that the inner solution should be a power series in at. With 

one finds 

the latter having the solution 

(7.10) 

(7.11) 

(7.12) 

(7.13) 
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which corresponds to equation (6.18). One term matching of this inner expansion to 
the outer expansion (7.10) , gives 

f$'0)(7) = A 7 3 .  (7.14) 

One would need to carry one more term in the outer expansion to determine the 
constant 01). 

The main result is 

(c2) = Npf/om g"@(g) dg (&)'+ O(aQ). (7.15) 

This has been obtained with the assumption S = v / 9  = O(1). Separate expansions 
have been made with S 1 and S Q 1 with the same result. The S Q 1 expansion 
requires po 9 ( 9 3 / E ) f .  The result for S + 1 is subject to some question since this 
parameter range is where the basic equation, (6.16), is not quite right. However, since 
the scaling is correct in this range it is likely that the result is valid here also. 

It can be seen from (7.10) that the effective length scale of the scalar correlation 
increases like t* and will eventually be comparable to the size of the energy-containing 
eddies, at which time the present decay results will fail to be valid. 

The experiments of Warhaft & Lumley are not perfectly suited to verify this decay 
rate because the heated wire spacing is comparable to the grid spacing and the 
turbulence is not stationary. However, the case with the smallest heated wire spacing, 
in which the wire spacing is equal to the grid spacing and the wires are located farthest 
downstream (where the scale of the turbulence has increased some), has the fastest 
decay rate, giving a decay like V2. In  this case the energy spectrum has an approxi- 
mate k-* range of about one decade and the measured scalar spectrum peaks in this 
range. It is felt that part of the discrepancy between t-32 and t-4.5 can be accounted 

for by the non-stationarity of the flow. If one replaces d t  by d d t  (an ad hoc procedure) 

and uses the experimental s( t )  one obtains decay exponents between 3.1 and 2-5 a t  the 
appropriate distance downstream of the grid. 

A more complete treatment of turbulent diffusion in decaying isotropic homo- 
geneous turbulence is within the realm of the general equations described in this paper 
and will be considered in later work. 

It is of some interest to calculate the scalar spectrum which corresponds to the outer 
solution Ria). This has been done by using equation (7.7), with the approximation for 
$given by (4.47), in equation (6.14). The resulting expression is 

1: 

1 &(x) = /om 2 Y sin 2 Y exp { - 3-62 ( Y 8 + 0.1 65 Y* )} d Y ,  (7.16) 

x = k(i8t)). I 
The function & has been computed and is presented in figure 6. It behaves like x2 for 
small z and like x-* for large 2. Corrections corresponding to the inner expansion would 
be at large x, beyond the x-4 range. Since the wavenumber is scaled with t* this shows 
that the peak in the spectrum moves toward small wavenumber like t-4 and the width 
of the peak also becomes smaller like t-8. The magnitude of the peak decreases like 
t3. This spectrum is very similar in shape to those presented by Warhaft & Lumley. 
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FIGURE 5. The scalar spectrum after inertial range inject,ion, 

calculated from the outer similarity solution. 

8. Conclusion 
A self-consistent theory of pair dispersion and scalar diffusion in isotropic, homo- 

geneous turbulence has been presented in which the only adjustable parameters are 
those required to specify the energy spectrum. The general equations have been 
applied to two- and three-dimensional stationary turbulence in order to compare the 
results with experiments. The most extensive experimental results for which com- 
parisons could be made were for the scalar spectrum in the viscous-convective and 
inertial-convective wavenumber ranges where the quantitative agreement was 
satisfactory. This directly supports the results for the turbulent pair diffusion 
coefficient. Other comparisons of a more qualitative nature were also made. These 
included the Richardson ‘ three-halves power ’ law for the separation of particles in 
inertial range three-dimensional turbulence and the corresponding exponential 
separation in inertial range two-dimensional turbulence. 
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